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Typical projections of simple multifractal measures with generalized dimensions 
Dq onto subspaces of dimension D are considered. It is known that for Do > D 
almost all projections have Euclidean support. Here it is shown that if in 
addition D~  increases beyond D, a typical projection changes from a singular 
continuous distribution to an absolutely continuous measure with a square- 
integrable, or even differentiable density, and thus from a multifractal to an 
ordinary distribution with trivial singularity spectrum. Since projections of 
strictly self-similar measures can be regarded as invariant distributions of 
iterated function systems, such a transition is found also there and is expected 
to occur in related systems. 

KEY WORDS: Multifractals; random maps; invariant measure; iterated 
function systems. 

1. I N T R O D U C T I O N  

Multifractals and multifractal spectra have proven to be important con- 
cepts in many areas of physics, (1-8) such as nonlinear dynamics, growth 
processes, turbulence, etc. In applications it may happen that for some 
reason one is able to observe only projections of a multifractal distribution, 
i.e., only integrals over some coordinates or degrees of freedom are 
available. Fundamental questions are then: What can we learn from a 
projection about the original multifractal, or what are the characteristics of 
projected multifractals? Are they again multifraetal distributions or not? 
These problems are addressed in the present paper. 

A closely related question concerns the nature of invariant distribu- 
tions of iterated function systems. (9) Such systems, which are obtained by 
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randomly composing linear maps, may be used for the construction of 
fractals and for image processing, ~ and in their nonlinear versions they 
occur in many branches of physics and science: We mention random Ising 
models, (1~ versions of the Anderson model, (m chaotic repellers in dynami- 
cal systems, (5) neural networks, (12) mathematical learning models, (~3) and 
certain prediction problems. (~4) The results given below are also relevant 
for these systems. 

The content of this paper is organized as follows: In Section 2 we state 
the main results and subsequently show their validity for projections from 
the plane onto lines. This is done first for products of one-dimensional 
multifractal measures, where a rigorous treatment is possible, and then we 
give a heuristic explanation which shows the generality of the results. In 
Section 3 we establish the connection with invariant densities of certain 
iterated maps. A proof for projections from arbitrary dimensions onto 
hyperplanes of some lower dimensions is given in the Appendix. As illustra- 
tion we consider products of strictly self-similar measures of Cantor type. 
with unequal probabilities, for which the generalized dimensions or the 
singularity spectrum are known analytically. 

2. R E S U L T S  

The main results of this paper are that there are three distinct possible 
cases with respect to the nature of projected multifractal distributions: 

1. SC-F: A typical orthogonal projection of a multifractal with 
fractal support results again in a multifractal with fractal support 
(SC-F: singular continuous with fractal support). 

2. SC-E: The projected distribution is again a multifractal, but it has 
Euclidean support, i.e., its fractal dimension is an integer (SC-E: 
singular continuous with Euclidean support). 

3. AC: The projection results in a ordinary, square-integrable density 
and is therefore no multifractal at all (AC: absolutely continuous). 

The first case, SC-F, occurs whenever Do, the fractal dimension of the 
original multifractal is smaller than D, the dimension of the space on which 
one projects. This is just the application of a result by Mattila ~15) to the 
support of singular distributions. It also implies that one has D(o N'm = Do, 
where D(o u ' m  denotes the fractal dimension of the distribution obtained by 
projecting a multifractal with Euclidean dimension N onto D-dimensional 
hyperplanes. 

In both cases SC-E and AC we have accordingly Do > D and D(o u ' m  = D. 
The distinction between cases SC-E and AC is new and depends on 
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the ratio of the generalized dimension (1) Do~ = D ( q =  ~ )  of the original 
multifractal and D: For D~/D < 1 we have case SC-E, otherwise case AC. 

First we will show under which conditions projections of multifractal 
product measures have a square-integrable density. This is particularly 
simple in the case of projections from R 2 onto lines. The arguments will be 
given here in detail, since the reasoning in higher dimensions follows along 
similar lines. Denote by ~ = (nl, n2) a unit vector parallel to the line onto 
which we project, i.e., we integrate over lines perpendicular to r~. An 
orthogonal projection pp(~) of a density p(x) in R z can be expressed as 

pp(r = f d2x 6(4 - r~x) p(x) (~) 

It is easily seen that the Fourier transform pp(k) of the projected 
density can be expressed as 

~p(k, ~) = fil(nlk ) . P2(n2k) (2) 

where the fii are the Fourier transforms of the factors of the density p(x). 
For multifractal densities which are mathematically not well defined, the fii 
have to be interpreted as Fourier-Stieltjes transforms of the corresponding 
measures p~=fei~Xd#i(x). The integrated densities #;(x) form devil's 
staircases in the case of Cantor measures. 

A projection has a square-integrable density pp(r if S pZ(~)d~= 
(270-1 S ]pp(k)l 2 dk is finite. Note that by definition a projection along one 
of the coordinate axes recovers one of the factors of the product measure, 
which are required to be singular, and so the integral always diverges for 
these directions, e.g., for h = (1, 0). Thus the most one can expect is to find 
parameter regions where almost all projections lead to a square-integrable 
pp(~). The latter is the case if ~c dn S dk IPp(k, n)[2< oo, where the contour 
C is a (half) unit circle in n space. The proof of square-integrability, 
however, is simpler and generalizes easier to arbitrary dimensions if one 
instead integrates over a full unit square at the origin of n space, i.e., over 
a continuum of equivalent contours. In addition with no loss of generality 
we can restrict the n integration and the k integral to positive values. Thus 
we consider 

l= f~ dnl f~ dn2 f o  dk lfi,(n,k)12, l~2(n2k)l 2 (3) 

which is equal to 

f ?  dk k-2(o~(k) �9 q~2(k) (4) 
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where we defined q~s(k)=~tfis(k')12dk'. It is known (16) that qoj(k)= 
O(kl-~J), where c~j is the Lipshitz-H61der exponent of the measure #j(x), 
which in the multifractal literature is known as ~min and which we therefore 
denote as ~09 . to indicate dimension and index of the factors�9 The integral mln,  j 

(4) converges if the integrand decays faster than k -1 for k--+ 0% which 
~(1) > 1. Since we are considering product leads to the condition Y.f= 1 . . . .  j 

measures, this sum is equal to e(m2~n=D~/, the minimal scaling index, 
respectively generalized dimension D(q = oo), of the original 2-dimensional 
multifractal.ll-8/ 

In order to understand these results and also its generality, consider 
the product of two equal triadic Cantor measures, where each is obtained 
by iteratively dividing intervals into two subintervals with length ratio 
a ~< 1/2 (e.g., a = 1/3 for the standard triadic Cantor set) and distributing 
"mass" to the subintervals with the ratios p and 1 - p ,  respectively, where 
p is the larger mass ratio, i.e., 1/2 ~ p ~< 1. The most divergent contribution 
in the iterative construction of the singular 2D density comes from squares 

�9 2 2 "  (2) ~.; n(~(m2i)n -- 2) where the density grows m each step by a factor p/a ,  1.e., Pn a 
with D ~ ) =  ea~, = 2 lnp/ln a = 2ea] . ~< 2, where D(q m and e,U) denote also 
in the following the generalized dimension and minimal scaling index of a 
multifractal with Euclidean dimension N. ~ 8) In a projection, however, the 
density corresponding to these squares p(2,1) grows only by a factor pZ/a in 
each iteative step and therefore p(Z'l)~an(~?n--1), which is divergent for 
n --+ ~ only '~ (2) 

. 1I 0{mi n < 1. This explains the result of the proof given above: If 
we have C~(m2!,=D~)>l the contribution of each square to the density 
approaches zero for n--+ 0% and if there is no systematic buildup of 
densities from individual squares which sum up in a projection, the 
projected density remains bounded and therefore square-integrable. There 
are exceptions, like the projections along the axes, where one recovers one 
of the factors of the product measure and thus gets divergent densities: 
Summing up individually vanishing densities can also result in a divergence 
of the sum at certain coordinates in the projection. The boundedness of 
integral I of Eq. (3) for D~  ) > 1 shows, however, that these exceptions are 
of measure zero with respect to all possible projections. 

The above reasoning implies, on the other hand, that a projection 
leads to a singular continuous measure if =(m2]. = D~ ) < 1 since all the fractal 
subsets of the 2D multifractal with singularity exponents ~3~ ~ with 
0~(2) < m~, ~ < 1 "survive" the projection in the sense that these lead to a 
divergent multifractal density also in the projection. This allows for two 
distinct situations with either the fractal dimension D~o2)> 1 or D~o2)< 1, 
which leads in the former case to a distribution with Euclidean support, 
i.e., D~o 2'1) = 1 (SC-E) and in the latter to a distribution with fractal support 
D~o2'*)=D(o 2) (SC-F). In both cases the projection is a "true" multifractal 
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with a nontrivial multifractal f ( e )  spectrum. (3/In contrast, for D ~  ) > 1 the 
f(c~) spectrum of a projected distribution is trivial since it reflects just the 
power law behavior at the boundary points of the distribution. 

To illustrate these results, consider the product of two equal Cantor 
measures as defined above. This 2D distribution is characterized by only 
two parameters 0 <~ a ~ 1/2 and 1/2 ~< p ~< 1. In Fig. 1 the distinct regions in 
this parameter space are displayed. 

In region SC-F, i.e., for a <  1/4 the fractal dimension D(02)< 1 and 
therefore a typical projection onto a line is a singular continuous measure 
with fractal support of dimension D(02'l)=D(02). In regime SC-E, 1/4< 
a < min(1/2, p2), one has D(o 21 > 1, resulting in D(oZl/= l, i.e., a distribution 
with Euclidean support for almost all projections. Since D ~  ) < 1 for these 
parameters, all projections are still singular. For the remaining parameter 
values, AC, the measure is absolutely continuous with a square-integrable 
density. We will show below that the projected measures are indeed of pure 
type as indicated, i.e., SC and AC components do not coexist for given 
parameter values. 

In Fig. 2 we depict two typical projected densities obtained numeri- 
cally in regimes (a) AC and (b) SC-E from 500 iterative construction steps 
and also the corresponding f ( e )  curves. These were calculated within the 
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Fig. 1. The parameter space of a 2D multifractal, the product of two equal triadic Cantor 
measures with contraction ratio a and mass ratio p (see text), and its behavior.under projec- 
tions onto lines: For parameters SC-F one gets singular projected distributions with fractal 
support, in regime SC-E a typical projection is still singular but with Euclidean support, and 
for the remaining parameters (AC) one gets a square-integrable density (AC) for almost all 
projections. 
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Fig. 2. (a) A density observed for a typical projection [ n =  (1, 0.5)] onto a line and the 
corresponding f (~)  spectrum in regime AC of Fig. 1 (a = 0.4, p = 0.6). The dashed line is the 
exact f (a )  spectrum. (b) Same as (a), but in regime SC-E (a = 0.3, p = 0.6). 

"canonical" formalism as described in ref. 17. From this figure one can see 
that it can be quite hard to distinguish numerically between the two types 
of behavior because in both cases the density may be quite irregular. 

In Fig. 2a the exact f (~)  spectrum is shown as a dashed line. It is well 
known that the divergent curvature at the maximum of the f (~)  curve can 
only be inferred by extrapolating a curvature vs. resolution refinement 
plot ~18) with the risk that a possible crossover regime is not reached. Note 
also that the value ~max = 2 in Fig. 2a simply reflects the power-law behavior 
of the density at its boundaries. We will see in the next section that the 
exponent of this power law depends in a simple way on the direction of the 
projection. By continuity this is also true for the case of Fig. 2b. Thus, in 
contrast to the case SC-F, where it is known that almost all projections 
lead to the same f (~)  spectrum, which is identical with the original 2D 



Projections of Multifractal Maps 233 

spectrum, the spectrum in region AC and SC-E is projection dependent. In 
the latter region, however, numerical calculations reveal a nontrivial 
dependence of the f (e )  curve on the angle of projection. 

The generalization of the results for projections from R 2 to R to 
arbitrary dimensions is also straightforward: The most singular contribu- 
tion to a multifractal with Euclidean dimension N has singularity index 
~(N) which means that an iteratively constructed density p~U) would 

mln 
n (N)  . ,  diverge as a %~,/a ~<" for n --> ~ with ~(u~, < N. To obtain a projection on a 

D-dimensional hyperplane one has to integrate over N - D  dimensions and 
the corresponding projected density p(N.D) scales as 

= an(~m ~ -  D) p(U,D)~ p(N)a.(N I>) N) 

i.e., it diverges for - (N) D~)  '~min = < D (cases SC-E and SC-F) and approaches 
zero otherwise (case AC). Note that the assumption of a product measure 
is not essential in the above reasoning and we expect that these results hold 
quite generally. A rigorous treatment is possible so far only for projections 
of product measures as given in the Appendix. The latter covers, of course, 
many interesting situations beyond the self-similar case, such as certain 
self-affine measures (different contraction ratios and mass distribution 
ratios in each factor), products of Cantor measures with randomly shifted 
intervals, and/or varying contraction ratios in the construction hierarchy, 
etc. 

For the product of N equal Cantor measures parametrized by 
contraction ratio a and mass ratio p the above result means that a typical 
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Fig. 3. The critical lines for the transition from SC-E to AC in a projection onto lines for 
the product of N equal Cantor  measures for N =  2, 3, 5, 10, 20, 50 (from left to right). 
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projection on a hyperplane of dimension D is square-integrable if 
N log p/log a > D, i.e., for a > pUlP. For projections onto lines (D = 1) the 
critical lines in parameter space for the transition from singular continuous 
(SC) to absolutely continuous (AC) projections are depicted for various N 
in Fig. 3. 

This figure also illustrates the fact that the region in (a, p) space where 
a singular projection is obtained vanishes as N/D increases. In addition, the 
projected distributions also get smoother: As outlined in the Appendix, a 
typical projection, for example, onto a line (D = 1) has a square-integrable 

--m,n ~(1) > 2n + 1. This is fulfilled for the product nth derivative if ~(N) = ~N= 1 . . . .  : 
of N equal Cantor measures for a >  pN/(2n+ 1). 

3. C O N N E C T I O N  W I T H  ITERATED F U N C T I O N  S Y S T E M S  

The relevance of the above results for iterated function systems or 
linear random maps follows from the fact that self-similar Cantor measures 
can be regarded as invariant measures of iterated function systems of non- 
overlapping construction. This implies that their projection from spaces 
with Euclidean dimension N ~> 2 onto subspaces with dimension D can also 
be regarded as invariant measures of iterated function systems in lower 
dimensions which are now either of nonoverlapping or of overlapping 
construction. The former case results in singular continuous measures 
with fractal support, whereas in the latter case one typically gets invariant 
distributions which may be singular continuous or absolutely continuous in 
accordance with the results depicted in Fig. 1. 

To demonstrate this connection, consider the following contracting 
maps Ti: 

xt+l  = a ix ,+  bi (5) 

with i= 1,..., M, x t e R  u, and a i<  1. If one randomly composes these 
similitudes uncorrelated and with probabilities p~ one gets an iterated 
function system (i.f.s.), which is known to generate a self-similar measure 
if a~ and bi are such that one has the nonoverlapping case, (9) which, e.g., 
in one dimension means that the interval spanned by the fixed points of the 
maps Ti is mapped on disjoint intervals under one iteration of Eq. (5). 
A probability density pt(x) is iterated in accordance with Eq. (5) as 

In the nonoverlapping case the invariant density p~(x), respectively 
its integral, defines a multifractal measure with fractal support with simple 
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well-known expressions for f (~)  or  D(q) .  (1 s) Projecting both sides of 
Eq.(6), e.g., onto lines with direction r l ~ R  N as  in Eq.(1), one gets 
immediately an iteration equation for the projected density Pt(~), 

which is seen to define an i.f.s, in one dimension which now is of over- 
lapping construction if Z t  ai > 1. In the limit t -* ~ we get the invariant 
density Po~(~.) of Eq. (7), which can be interpreted as the projection of the 
invariant density of Eq. (6), and therefore the results of the previous section 
directly apply to p~(~). Explicitly this means that for Z i a i <  1, Eq. (7) 
defines an i.f.s, in region SC-F in accordance with existing results/19) For 
Y~ia~> 1 we have case SC-E or AC, depending on whether maxi(pja~) is 
larger or smaller than one. For the more rigorous treatment the p~, a~, and 
b~ have to fulfill certain constraints in order to be derivable from a factoriz- 
ing measure in RN: For instance, in Fig. 2 we have ai = a ~< 0.5, i =  1,..., 4, 
{pi} = {p2, p(1 - p ) ,  p(1 - p ) ,  (t _p)2},  and the b~ have to be located on 
the edges of a rectangle. The 1D maps which define, e.g., the projected 
density of Fig. 2b are depicted in Fig. 4. The graphs of Fig. 2 were 
actually calculated by exploiting this connection. The phrase "for almost all 
projections" in our proof translates here to "almost all shifts of the form 
~-= hbT' with the b~ related as above. 

We expect that the above results for linear maps also hold for com- 
positions of one-dimensional nonlinear maps, like those mentioned in the 
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/ 

00. . . . .  

0.0 x, 1.0 
Fig. 4, The iterated function system which has as invariant density the projected distribution 
of Fig. 2b if the probabilities Pi are chosen as 0.36, 0.24, 0.24, and 0.16 for i =  1,..., 4. The 
asymptotic density vanishes outside the interval spanned by the fixed points of the maps 
(intersections with the dashed line). On intervals A and B the invariant measure is self-affine. 
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introduction, as long as each of them is everywhere contracting: In the 
same spirit as the heuristic arguments of Section 2 one should typically get 
square-integrable invariant densities if repeated iteration of each of the 
maps individually (with weight Pi) leads asymptotically to a vanishing 
density. In all other cases one expects singular continuous distributions 
which show true multifractality. 

The connection with linear iterated function systems has several con- 
sequences for the original problem of projections of multifractals. First, 
there exists a "pure theorem ''(2~ for the invariant measures obtained from 
Eq. (7), which states that the invariant measure is either singular con- 
tinuous or absolutely continuous and no mixture of these types (the pure 
point type occurs only in degenerate cases). Thus this theorem holds also 
for projections of strictly self-similar measures, which is especially meaning- 
ful in region SC-E. For more general multifractals, however, it may happen 
that in the latter region of parameter space a projection has in addition an 
absolutely continuous component. Second, there are cases, where, e.g., the 
four maps of Fig. 4 with slope a may be regarded as the second iteration 
of a two-map system with contraction ratio a ' =  x/-a. This corresponds to 
a special projection from N = 2 to D = 1 with direction h II (x/d, 1):. For the 
two-map system with a ' =  1/7, with the golden mean 7 = (1 +,,/5)/2, and 
Pl =P2 = 1/2 one knows that the invariant distribution is singular con- 
tinuous, (2t~ although the parameters of the corresponding 2D multifractal 
(a= 1/72=0.3819...) lie in region AC. This means that the measure-zero 
exceptions of our proof are in general more complicated and not restricted 
to projections along the axes where the product measure factorizes. Third, 
since the invariant distribution of, e.g., the four-map system of Fig. 4 lies 
within the interval defined by the outermost fixed points, there are regions 
at the boundaries of this interval (denoted A and B in Fig. 4) where exact 
scaling relations hold, since these regions can be reached only by applica- 
tion of the uppermost, respectively lowest, map of Fig. 4. For case AC this 
means that the density, e.g., near ~ = 0 Obeys p~(~) = (pja) p~(r where 
Pi is the probability of the corresponding "boundary map." Since the maps 
which take this role change with the direction ti and because the above 
scaling relation determines, e.g., ~max of the projected density, one sees that 
in region AC (and also in a nontrivial manner in region SC-E) the f(e)  
spectrum depends in general on the direction of the projection. 

Finally we mention an interesting aspect of the irregularity of the 
densities in region AC: Although the multifractal spectrum of the projected 
measure is trivial in this parameter region, the graphs of the invariant 
densities are partially self-affine (if they stem from self-similar multifractals) 
and can therefore also be analyzed within the multifractal formalism (22) 
leading to nontrivial spectra if the graphs are not differentiable. One may 
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speculate that one can then extract information about the original multi- 
fractal from the latter spectra, or more generally from spectra obtained 
from the graphs of the highest existing derivative of the densities. 

4. S U M M A R Y  

We have shown that a multifractal distribution may appear in various 
forms if observed in a typical projection: It may appear as an ordinary 
square-integrable density with trivial multifractal spectrum or as a singular 
distribution with Euclidean or fractal support and thus as a true multi- 
fractal. What is actually observed depends on the ratios of the generalized 
dimensions Do and Do to the dimension D of the space onto which one 
projects. These results were obtained rigorously for projections of product 
measures and we gave arguments why they should hold quite generally. We 
also established a connection with invariant densities of iterated function 
systems and how the results apply there. It remains an open problem to 
which extent properties of the original multifractal can be inferred from 
a projection in cases where the Hausdorff dimension Do of the original 
multifractal exceeds D. 

APPENDIX  

The heuristic argument in Section 3 suggests that whenever ~ u ~ =  
D(q = oe) of the original multifractal increases beyond D, the dimension of 
the subspace on which we project, one gets an ordinary density in the 
projection. To prove this, consider the product of N one-dimensional 
measures, each characterized by a H61der exponent all? . resulting in mm,j 
,~(N)_.mm ~- ~]]N= I O~(1) . . . .  j of the product. An orthogonal projection pp(~), ~ ~ R D, 
of an N-dimensional density p(x), x e R N, on a subspace of dimension D 
can be expressed by integrating over D (N-1)-dimensional  hyperplanes 
with normal vectors n (t) e .R N, 1 = 1 ..... D, 

D 
= d N x  p(x) [l (A.1) 

l = 1  

where V is the D-dimensional volume spanned by the in general non- 
orthogonal vectors n ~t) and the ~ are the covariant components of ~ in the 
coordinate system defined by the n ~I). Similar to the case of Section 2, one 
projection in this representation is characterized by a continuum of 
equivalent n ~l), since a projection from N to D dimensions is uniquely 
determined by D .  ( N - D )  direction cosines instead of N . D  parameters 
appearing in (A.I). 
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The Fourier transform of Eq. (A.1) yields 

~p(k )=VfdNxp(x )ex  p ij lt=1 

= V+I- I.= tSj , ~') (A.2) 

with the last equality following from the assumed factorization of the 
density p(x) into N factors pj(xj). Here t5 denotes the Fourier transforms 
of the densities, respectively Fourier-Stieltjes transform of the measures if 
a density does not exist. In generalization of Eq. (3) we integrate ]~p(k)l 2 
over a product of N D-dimensional solid spheres in n space. Apart from 
a constant factor the resulting integral is bounded by the product of N 
factors of the form /j(k) = ~sD dDnj [fi(k" nj)[ 2, j =  1 ..... N. Integrating in 
spherical coordinates and using the order relation for the ~0j(k) of Eq. (4), 
one finds immediately that each factor 

This implies that 

Ij(k) ~<const-Ikl r 

N oo 

f f fO lk--~')=l~min'j d~ I1 Iy(k) <. c dDk Ik[--'~N-I ~,l)mm, j = e '  dk k D N . ,  
j = l  

with constants c and c'. This tast integral is finite if 

N 

D ~ ) = e ( N ) =  ~ a ~ > D  (A.3) 
- rnln mln ,  J 

j = l  

which is the condition for getting square-integrable densities for almost all 
projections onto D-dimensional subspaces of R u. 

Regarding the smoothness of projected distributions, we treat here 
briefly the case for projections from R N onto lines (D = 1). A projected 
distribution has a square-integrable nth derivative if ~k 2" I~p(k)lZdk is 
finite. Inserting the expression (A.2) for ~p(k) and integrating over the 
N-dimensional unit cube in n space yields an expression which is bounded 
by 

N 1 N 

I= f dk k 2n [I ool- dnj Ifij(njk)l 2 :  f dk k 2"-N [I q)j(k) (A.4) 
j = l  j = l  

with 
k 

~oj(k); fl IPJ(k')12 &'= O(k'- ~n,j) 



Projections of Multifractal Maps 239 

as in  Eq. (4). T h e  k in tegra l  in  Eq. (A.4) c an  be res t r ic ted to pos i t ive  values.  

T h u s  the c o n d i t i o n  I <  oo yields 2 n - N + Y ,  u 1 (1 N ( 1 )  = UCmin, j /"~ --1~ or  

N 
D ~ ) = e ( u ) =  ~ ~(1) . > 2 n + l  (A.5) - rnln mln,j 

j = l  

as c o n d i t i o n  for the squa re - in t eg rab i l i t y  of the n t h  der iva t ive  of  a p ro jec ted  

d i s t r i b u t i o n  for a l m o s t  all p ro jec t ions .  
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